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Summary

Postembryonic neurogenesis has been observed in several regions of the vertebrate brain, 

including the dentate gyrus and rostral migratory stream in mammals, and is required for normal 

behavior [1–3]. Recently the hypothalamus has also been shown to undergo continuous 

neurogenesis as a way to mediate energy balance [4–10]. As the hypothalamus regulates multiple 

functional outputs, it is likely that additional behaviors may be affected by postembryonic 

neurogenesis in this brain structure. Here, we have identified a progenitor population in the 

zebrafish hypothalamus that continuously generates neurons that express tyrosine hydroxylase 2 

(th2). We develop and use novel transgenic tools to characterize the lineage of th2+ cells and 

demonstrate that they are dopaminergic. Through genetic ablation and optogenetic activation we 

then show that th2+ neurons modulate the initiation of swimming behavior in zebrafish larvae. 

Finally we find that the generation of new th2+ neurons following ablation correlates with 

restoration of normal behavior. This work thus identifies for the first time a population of 

dopaminergic neurons that regulates motor behavior capable of functional recovery.

Results and Discussion

th2+ neurons are dopaminergic and arise from dlx5/6-expressing precursors

In the mammalian hypothalamus the embryonic neural precursor lineage expressing Dlx 
genes produces dopaminergic neurons [11]. From previous studies in our laboratory we 

found that neural precursors expressing a dlx5/6 enhancer were continuously present in the 
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zebrafish hypothalamus [12]. However we failed to observe expression of Tyrosine 

Hydroxylase (TH), a marker of dopaminergic neurons, in this lineage using available 

antibodies. Because zebrafish and other non-mammalian vertebrates express a second 

tyrosine hydroxylase gene, th2 [13, 14], we examined the expression of a transgenic reporter 

using 9.6 kb of th2 upstream regulatory sequence driving GFP-Aequorin (Figure 1A). This 

construct was used to establish a stable transgenic zebrafish line [Tg(th2:GFP-
Aequorin)zd201, hereafter referred to as th2:GFP, Figure 1A,B], and double labeling with a 

th2 mRNA probe showed extensive overlap with GFP throughout the hypothalamic posterior 

recess (Figure 1C). Next, we crossed the th2:GFP reporter line to fish expressing a 

dlx5/6:mCherry reporter, which is expressed in neural precursors [12], and analyzed 

coexpression in the hypothalamic posterior recess at 7 dpf. We found that 83.9% +/− 3.9% 

(SEM, n=5 brains) of GFP+ cells also expressed mCherry protein that persisted through 

terminal differentiation (Figure 1D), indicating that TH2+ neurons arise from this lineage. 

While a previous study concluded that th2+ cells are serotonergic [15], we instead found that 

92.8% +/− 6.9% (SEM, n=5 brains) of th2:GFP+ cells at 7 dpf were double labeled with a 

dopamine antibody (Figure 1E). In contrast, only 5.4 +/− 4.2% (SEM, n=5 brains) of 

th2:GFP+ cells were labeled with a serotonin antibody (Figure 1F). In agreement with a 

recent analysis using a Th2 antibody [16] we therefore conclude that th2+ cells are 

dopaminergic, and like other dopaminergic populations in mammals, are generated by Dlx+ 
neural precursors.

th2+ cells are continuously generated throughout life

Because we have previously shown that hypothalamic dlx5/6+ precursors are present 

through adult stages [12], we reasoned that th2+ cells arising from these precursors might 

also be generated postembryonically. To test this hypothesis we administered 10 mM BrdU 

to th2:GFP transgenic larvae and adults for 24 hours, and following a chase period we found 

newly born GFP+ cells at 9 days post-fertilization (dpf), 25 dpf, and 6 months post-

fertilization (mpf) (Figure 2A–C). Consistent with a higher rate of neurogenesis in younger 

animals, the BrdU labeling index was 10.4% with only 3 days of chase in early larvae (9 

dpf), 5.9% with 2 weeks of chase in late larvae (25 dpf), and 1.1% with 2 weeks of chase in 

adults (Figure 2D). We observed a higher BrdU labeling index in the dlx5/6+ precursor 

population at all stages (data not shown), suggesting that the birth of th2+ neurons may be 

more tightly regulated, perhaps in response to environmental signals. Overall, our data 

indicate that along with other cell types [12], zebrafish constantly generate dopaminergic 

neurons in the hypothalamus into adulthood.

Ablation of th2+ neurons reduces swimming frequency

While a function for hypothalamic th2+ neurons in the modulation of motor function has 

been previously suggested [17], a definitive behavioral analysis of this population has not 

been performed due to the lack of specific genetic tools. We therefore took a genetic 

approach to ablate th2+ cells and examine the resulting effects on behavior. We generated a 

th2:Gal4 transgenic line [Tg(th2:Gal-VP16)zd202] which was crossed to Tg(UAS-E1b:NTR-
mCherry)c264 fish [18] to drive Nitroreductase (NTR) expression in th2+ neurons (Figure 

S1A) and enable chemical ablation [19, 20]. While the hypothalamic posterior recess of 

untreated brains had an average of 128.7 ± 20.6 mCherry+ cells (S.E.M., n=7 brains), after 
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addition of 5 mM metronidazole (MTZ) to double transgenic embryos from 5–7 dpf, we 

observed a reduction to 18.1 ± 2.4 cells/brain (S.E.M., n=10 brains), a decrease of 86% 

(Figure 3A–B). The effects of ablation on spontaneous swimming were then measured in 

single 8 dpf larvae over a ten-minute recording period, during which the animals were 

allowed to move freely within a dish. Ablation of th2+ neurons significantly reduced both 

the bout frequency and total amount of time spent swimming, but not the amplitude of 

individual swimming bouts (Figure 3C–E, Figure S1C, Movies S1–S2, p=0.009 for swim 

frequency; p=0.020 for swim time by 2-way ANOVA). In contrast treating non-transgenic 

siblings with MTZ (Figure 3C–E), and ablation of hypothalamic radial glia using a separate 

transgenic line [18] (Figure S1D–E), did not affect swimming behavior. Decreased 

frequency of swimming was also observed following MTZ treatment of an independent 

transgenic line, expressing NTR-GFP directly under the control of the th2 enhancer (Figure 

3F–I and Figure S1B). Our data thus suggest that th2+ neurons regulate the initiation of 

movement.

Activation of th2+ neurons increases swim frequency

To test the sufficiency of th2+ neurons for the initiation of swimming, we expressed 

Channelrhodopsin-2 (ChR2) in these cells by crossing Tg(UAS:ChR2-YFP)a144 [21] and 

Tg(th2:Gal-VP16)zd202 fish (Figure S1E) Expression of the ChR2-YFP fusion protein 

specifically in posterior recess neurons allowed us to examine their axon trajectory and 

targets using whole-brain confocal imaging (Figure 3J; Movie S3). We found that a majority 

of axons appear to terminate a short distance from the posterior recess, likely in the posterior 

tuberculum. This projection pattern differentiates the th2+ neurons from th1− expressing 

cells in the posterior recess, which primarily innervate local hypothalamic targets [22].

Freely moving larvae in a dish were then stimulated with 5-second pulses of blue light 

delivered once per minute over a 10-minute period, causing activation of the cells as 

indicated by cfos expression (Figure S1G). During the blue light pulse, larvae from ChR2+ 

crosses showed increased frequency of swimming compared to controls (Figure 3K, Figure 

S1H, Movies S4–5). Automated tracking revealed that increased bout frequency during the 

stimulus resulted in a significant increase in the animal’s cumulative displacement compared 

to baseline (Figure S1I–J). Together with the ablation experiments, these data indicate that 

th2+ neurons may function either in the direct activation of motor behavior, or as suggested 

previously, in modulating the threshold of a motor response to sensory-evoked stimuli [17].

th2+ neurons are restored after ablation

Based on our observations that th2+ neurons are continuously generated like other cells in 

the zebrafish hypothalamus [12], we hypothesized that this cell population may have the 

ability to recover following ablation. We therefore performed ablations from 5–7 dpf and 

behavioral analysis at 8 dpf as described above, then treated the same larvae with 10 mM 

BrdU for two days (8–10 dpf), and allowed them to recover for 2 weeks before receiving an 

acute treatment of 5 mM MTZ or 0.5% DMSO. Following immunohistochemistry with 

mCherry and BrdU antibodies, ablated animals showed a striking recovery in the overall 

mCherry+ population (Figure 4A,B,E). While these data do not allow us to distinguish true 

regeneration from the normal process of cell addition during the experiment, we observed a 
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significant increase in the fraction of newly born mCherry+ cells compared to unablated 

controls, consistent with a regenerative response (Figure 4F). The actual level of 

neurogenesis was likely even higher, due to the fact that progenitors becoming postmitotic 

before 8 dpf were not labeled with BrdU. In a separate study, we have also observed a 

transient increase in BrdU uptake by neural progenitors 2 days after ablation of th2+ neurons 

[23]. Together, these data show that th2+ neurons are capable of recovery after injury, 

similar to dopaminergic neurons in the mammalian olfactory bulb [24]. Interestingly, those 

neurons arise from progenitors expressing a similar series of developmental transcription 

factors as we have observed in the zebrafish hypothalamus [12, 25].

Replacement of th2 neurons correlates with recovery of swimming deficits

Because adult-born th2+ cells extend both short radial processes into the ventricle and long 

projections (Figure 2C), we hypothesized that cells born after ablation may be capable of re-

integrating into existing circuits. We therefore tested whether th2+ cell replacement led to 

functional recovery of the swimming deficits resulting from their ablation. Following a two-

week recovery period, MTZ-treated and control fish received another treatment with MTZ or 

DMSO (Figure 4A–E), and behavioral analysis was performed on groups of 3 larvae. Fish in 

which the th2+ neurons had been ablated at 7 dpf displayed swimming behavior 

indistinguishable from that of unablated siblings (p=0.60 for swim frequency; p=0.80 for 

swim time by 2-way ANOVA), while fish receiving an ablation at 25 dpf displayed a 

significant decrease in swimming bout frequency and time spent swimming (Figure 4G–H, 

Figure S2, p=0.034 for swim frequency; p=0.032 for swim time by 2-way ANOVA). While 

th2+ neurons are likely only one of many cell types in the zebrafish brain that can be 

restored after ablation, our data indicate a strong correlation between the replacement of 

th2+ cells and functional recovery of the behavior they regulate. Proof of functional 

integration into circuitry will require further analysis of physiological activity, but our results 

are consistent with this possibility.

Conclusions

This study provides the first genetic analysis of the th2+ neuronal population in the zebrafish 

hypothalamus. We have shown that th2+ neurons are dopaminergic and arise from dlx5/6+ 

precursors, similar to dopaminergic neurons in the mammalian hypothalamus and olfactory 

bulb. In addition, we find that th2+ neurons regulate the frequency of spontaneous 

swimming, providing the first genetically validated link between these neurons and a 

behavioral function. Most intriguingly, our data indicate th2+ neurons are replaced within 2 

weeks after ablation, coinciding with a recovery of normal swimming behavior. Together, 

our findings suggest that even in non-regenerative mammalian systems, replacement of 

dopaminergic neurons that modulate motor function after loss from disease or injury could 

potentially support the recovery of normal behavior.
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Experimental Procedures

Use of zebrafish

Larvae were raised in E3 medium at 28.5°C until 5–7 dpf at which point they were fed daily 

until analysis. Larval and adult brains were obtained by dissection from animals fixed in 4% 

paraformaldehyde + 5% sucrose in PBS. Ablations were performed by immersion in E3 

media containing 5 mM MTZ in 0.5% DMSO for 2 days in the dark. BrdU labeling of larvae 

was performed by immersion in E3 medium with 10 mM BrdU in the dark. Adult fish were 

injected interperitoneally with 10 mM BrdU in 110 mM NaCl. All procedures were 

approved by the IACUC committee at the University of Utah.

Generation of transgenic lines

For th2:GFP-Aequorin, th2:Gal4-VP16, and th2:ChR2-tRFP transgenes, a 9.6 kb regulatory 

sequence flanking the 5’ end of the th2 open reading frame was cloned by gap repair 

recombineering (http://ncifrederick.cancer.gov/research/brb/

recombineeringInformation.aspx) from BAC clone CH211-260P3 into a Gateway donor 

vector to make pENTR:th2(9.6kb). This vector was used for LR cloning into destination 

vectors containing GFP-Aequorin, Gal4-VP16, or ChR2-tRFP coding sequence flanked by 

Tol2 transposon sites. The th2:NTR-EGFP transgene was generated by replacement of the 

ChR2-tRFP coding sequence with an NTR-eGFP coding sequence [25] in the destination 

vector using restriction digestion and ligation.

To generate stable transgenic lines for th2:GFP-Aequorin and, th2:Gal4-VP16, 10–50 pg of 

DNA was injected into fertilized, single-cell zebrafish embryos along with 20–30 pg Tol2 

mRNA to enable genomic integration. Founder animals were identified by outcrossing and 

screening progeny for fluorescence, or by PCR detection of the transgene. Individual lines 

were established after two successive generations of outcrossing to WT animals. Allele 

designations for stable lines are Tg(th2:GFP-Aequorin)zd201 and Tg(th2:Gal-VP16)zd202.

In situ hybridization and immunohistochemistry

In situ hybridization was performed as previously described in [27]. Antisense probe for th2 
was generated by PCR amplification using the primers below, followed by transcription with 

T7 RNA Polymerase. th2 primers: 5’- CGGAGACAGCTTCGTGTT, 3’- 

GCTCATTAGAAAGGGCATA. cfos probe was made as previously described [28]

Immunohistochemistry was performed as previously described in [18], with the addition of 

treatment with 2 N HCl for 30–60 minutes for BrdU detection.

The following primary antibodies were used: Rabbit anti-DA (purchased from H.W.M. 

Steinbusch), Rabbit anti-5HT (Sigma, S5545), Mouse anti-GFP (Invitrogen, A11120), 

Rabbit anti-GFP (Invitrogen, A11122), Chicken anti-GFP (Aves, GFP-1020), Rabbit anti-

dsRed (Clontech, 632496), Mouse anti-BrdU (DSHB, G3G4-BrdU), Chicken anti-BrdU 

(Aves, CBDU-65A-Z)

The following secondary antibodies were used: Goat anti-Mouse Alexa Fluor 448 

(Invitrogen, A11001), Goat anti-Rabbit Alexa Fluor 488 (Invitrogen, A11008), Donkey anti-
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Chicken Alexa Fluor 488 (Jackson ImmunoResearch, 703-545-155), Goat anti-Chicken 

Alexa Fluor 568 (Invitrogen, A11041), Goat anti-Mouse Alexa Fluor 633 (Invitrogen, 

A21050), Goat anti-Chicken Alexa Fluor 633 (Invitrogen, A21103), Goat anti-Mouse Alexa 

Fluor 647 (Invitrogen, A21235), Goat anti-Rabbit Alexa Fluor 647 ((Invitrogen, A21244), 

Goat anti-Chicken Alexa Fluor 647 (Invitrogen, A21449)

Microscopy

Whole larval brains were imaged ventrally through the entire hypothalamus, determined by 

the anatomy of the 3rd ventricle and posterior recess. Adult brains were bisected 

midsagittally and imaged laterally from the midsagittal surface. Images were collected on an 

Olympus FV1000 confocal microscope, an Olympus BX51WI compound fluorescence 

microscope, and an Olympus SZX16 fluorescence dissecting microscope. Image 

quantification was performed with ImageJ software, and images were processed for figures 

using Adobe Photoshop.

Behavior

All behavioral measurements were made on a custom-built apparatus in which the 

movements of free-swimming animals were monitored using a Pike CCD camera (Allied 

Vision Tech, Stadtroda, Germany) controlled by custom LabView software (National 

Instruments, Austin, TX). For optogenetics experiments, animals were stimulated with 470 

nm light from a high-power LED at 0.6 mW/mm2, distributed uniformly across the arena 

with a condenser lens and photographic diffuser paper. Movement was analyzed online using 

a running frame subtraction, in which the maximal pixel intensity change in each difference 

image was computed and then saved. Frames in which the fish moved were apparent as 

transient spikes in this vector. Subsequent analysis in MATLAB identified swim bouts using 

a spike-finding algorithm and computed the amplitude and frequency of these events as a 

measure of locomotor activity. Automated tracking analyses were performed by applying 

custom MATLAB scripts to movies of the behavior acquired at 404 frames/s, then 

measuring each animal’s instantaneous velocities and cumulative displacement during the 

stimulus and baseline periods.

Statistical analyses

Single variable pairwise comparisons were analyzed using a Student t-test. Multivariable 

datasets were analyzed using ANOVA, followed by Bonferroni Multiple Comparisons test to 

produce multiplicity-adjusted p values for pairwise comparisons. Significance was defined 

as a p value of 0.05 or smaller. Outliers were excluded at p<0.01, using Grubbs’ test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A th2:GFP transgene labels dopaminergic neurons derived from a dlx5/6+ precursor 
lineage
(A) Live zebrafish 7 dpf larva expressing th2:GFP with schematic of th2 enhancer/promoter 

region used for transgenes. (B) Ventral whole-mount view of th2:GFP expression in a 

dissected 7 dpf brain, box indicates area of posterior recess shown in (C–F). (C) 

Simultaneous in situ hybridization for th2 mRNA (left) and anti-GFP immunohistochemistry 

(middle) shows transcript expression in all th2:GFP+ cells (right). Ventral whole-mount 

view of a dissected 7 dpf brain is shown. (D) Co-expression analysis shows that most 

th2:GFP+ cells (green) express dlx5/6:mCherry (magenta), indicating their origin from 

dlx5/6+ precursors. (E) Co-expression analysis shows that most th2:GFP+ cells (green) 

express dopamine (magenta). (F) Co-expression analysis shows that few th2:GFP+ cells 

(green) express serotonin (magenta). All images in (D–F) are ventral maximum intensity 

confocal Z-projections of the hypothalamic posterior recess from dissected 7 dpf brains. 

Individual and merged channels of boxed regions are shown in lower panels. Scale bar in (B) 

= 50µm, all other scale bars = 10µM.
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Figure 2. th2 + cells are continuously generated throughout life
(A) 5 dpf larvae were treated with BrdU for 24 hours and analyzed at 9 dpf. Numerous 

th2:GFP+ cells (green) are labeled with BrdU (magenta) in the hypothalamic posterior 

recess. Arrowheads indicate double-labeled cells. (B) 12 dpf larvae were treated with BrdU 

for 24 hours and analyzed at 25 dpf. th2:GFP+ cells (green) labeled with BrdU (magenta) 

can be found in medial regions of the hypothalamic posterior recess. Arrowheads indicate 

double-labeled cells. (C) 6 mpf fish were injected interperitoneally with BrdU and analyzed 

2 weeks later. th2:GFP+ cells (green) labeled with BrdU (magenta) can be found in a 

midsagittal view of the hypothalamic posterior recess. Arrowheads indicate double-labeled 

cells. (D) Percent of BrdU+ cells in the th2:GFP+ population throughout the entire posterior 

recess. Error bars=SEM, n=5 brains. Images in (A–B) are ventral maximum intensity 

confocal Z-projections of the hypothalamic posterior recess. Images in (C) are maximum 

intensity confocal Z-projections from midsagittal views of the hypothalamic posterior 
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recess. Individual and merged channels of boxed region are shown in lower panels. Scale 

bars=10µM.
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Figure 3. th2+ cells modulate the initiation of swimming behavior
(A–B) Representative brains of 8 dpf th2:Gal4-VP16; UAS:NTR-mCherry larvae treated 

with 0.5% DMSO (A) or 5mM MTZ (B) from 5–7 dpf. (C–E) Effects of ablation on 

behavior in 8 dpf larvae as measured by swimming frequency (C) time spent swimming (D), 

and swim amplitude (E) Error bars=SEM, n=6 larvae for each condition except NTR+ fish 

treated with MTZ, wherein n=5 due to exclusion of an outlier (p<0.01, Grubbs’ test). Two-

way ANOVA indicates a significant interaction between genotype and treatment for swim 

initiations (p=0.009 for swim frequency; p=0.020 for swim time), but not for swim 
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amplitude. Adjusted p values shown for pairwise comparisons are based on Bonferroni 

Multiple Comparison test. (F–G) Representative brains from 8 dpf th2:NTR-EGFP larvae 

treated with 0.5% DMSO (F) or 5mM MTZ (G) from 5–7 dpf. (G–H) Effects of ablation on 

swimming behavior in 8 dpf larvae as measured by swimming frequency (H) and time spent 

swimming (I). Error bars=SEM, n=8 individual larvae for each condition. p values based on 

Student t-test. See Figure S1 for whole-animal images of NTR transgene expression, 

representative plots of swimming behavior, and control ablations of radial glia. (J) 

Representative brain of th2:Gal4: UAS:ChR2-YFP larva, showing that most axons appear to 

terminate nearby in the posterior tuberculum. (K) Average swim bouts/sec before and during 

blue light pulse for individual larvae. Error bars=SEM, n=4 (wild-type), n=5 (ChR2). Two-

way ANOVA demonstrates significant interaction between genotype and light exposure 

(p=0.0025). Adjusted p values shown for pairwise comparisons are based on Bonferroni 

Multiple Comparison test. Images in (A–B,F–G,J) are ventral maximum intensity confocal 

Z-projections of the brain. Scale bar = 10µM. See Figure S1 for whole-animal images of 

ChR2 expression, and examples of neuronal activity and swimming behavior after 

stimulation.
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Figure 4. th2+ cells are replaced after ablation and mediate functional recovery of swimming 
behavior
(A–D) Representative brains from th2:Gal4-VP16; UAS:NTR-mCherry larvae that were 

treated with 0.5% DMSO or 5mM MTZ from 5–7 dpf, followed by 10 mM BrdU from 8–10 

dpf and allowed to recover for two weeks (10–25 dpf) before acute treatments with 0.5% 

DMSO or 5mM MTZ. (E) Recovery of th2+ cells measured by total cell number. Analysis 

of the 4 groups by 2-way ANOVA indicates that the 25 dpf treatment has a significant effect 

on the number of th2:mCherry cells at 28 dpf (p=0.0001), while the 7 dpf treatment does not 

(p=0.082); nor is there a significant interaction between two successive treatments (p=0.20). 
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Adjusted p values shown for pairwise comparisons are based on Bonferroni Multiple 

Comparison test. n=3 brains for larvae untreated at 7 dpf, n=4 brains for larvae treated with 

MTZ at 7 dpf. (F) Percent labeled by BrdU at 8 dpf. Error bars=SEM, n=5 brains. p value 

based on Student t-test. (G–H) Recovery of behavior 3 weeks after ablation as measured by 

swimming frequency (G) and time spent swimming (H), n=5 groups for each condition 

except n=4 for wild-type larvae treated with MTZ+DMSO after exclusion of an outlier 

(p<0.001, Grubbs’ test). Statistical analyses were performed separately for the wild-type and 

NTR+ larvae. Two-way ANOVA of wild-type larvae shows no significant effect of either the 

7 dpf treatment (p=0.95 for swim frequency; p=0.89 for swim time) or the 25 dpf treatment 

(p=0.13 for swim frequency; p=0.37 for swim time) at 28 dpf, and there is no significant 

interaction between the successive treatments (p=0.66 for swim frequency; p=0.76 for swim 

time). For NTR+ larvae, 2-way ANOVA indicates that the 7 dpf treatment does not affect 

swimming behavior at 28 dpf (p=0.60 for swim frequency; p=0.80 for swim time), while the 

25 dpf treatment has a significant effect (p=0.034 for swim frequency; p=0.032 for swim 

time). There was no significant interaction between the successive treatments (p=0.55 for 

swim frequency; p=0.64 for swim time). Adjusted p values shown for pairwise comparisons 

are based on Bonferroni Multiple Comparison test. Images in (A–D) are ventral maximum 

intensity confocal Z-projections of the hypothalamic posterior recess. Scale bar = 10µM. See 

Figure S2 for representative plots of swimming behavior in ablated and unablated animals.
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